Introduction to the LETI-ESOFT Course Unit

2025 - 2026

Alexandre Gouveia
School of Engineering
Polytechnic of Porto
aas@isep.ipp.pt

Context

- 3rd curricular semester (1st semester / 2nd year) of the Bachelor on Telecommunications and Informatics Engineering (LETI)
- Previous related course units (1st year)
 - APROG Algorithms and Programming (1st semester)
 - FSOFT Fundamentals of Software Development (2nd semester)
- Other related course units (2nd year)
 - BDAMD Databases and Data Warehouses (3rd semester)
 - DSSMV Software for Mobile Systems (3rd semester)
 - PSOFT Software Project (4th semester)

Previous Knowledge Assumed

- Fundamental notions of algorithms (APROG)
 - Decompose a problem into smaller problems
 - Algorithms implementation in C through a procedural paradigm

- Basic notions of software development (FSOFT)
 - Knowledge and practice of the major software development activities
 - Adoption of the object-oriented (OO) paradigm
 - Usage of UML diagrams to elaborate some software artifacts
 - Software implementation in C++

ESOFT – General Goals

• To consolidate software development competencies previously acquired (APROG, FSOFT)

- To deepen and extend these competencies, namely regarding:
 - Iterative and Incremental (I&I) Software Development Process (SDP)
 - Requirements Engineering
 - Development guided by automatic regression tests
 - System design and coding

ESOFT – Specific Goals

At the end of the course unit, the student must be able to:

- 1. Apply an I&I SDP, in a deterministic way
- 2. Apply **requirements** engineering and **analysis** methods enhancing the understanding and specification of the application domain
- 3. Apply and justify the adoption of software **design** methods, principles, patterns and architectures
- 4. Apply a **test-driven** development (TDD) approach for system construction
- 5. Build the system in accordance with the design, using C++

Some Tips and Rules

Classes (theoretical and lab) are important

- Faculty provided documents and presentations do not cover all content in-depth
- Students' competencies will not be acquired just by reading the bibliography
- Practice is required → Put your hands on the job
- Both lectures (T) and lab classes (PL) are in person (cf. the ISEP room in your timetable)
- Repository: https://moodle.isep.ipp.pt
 - Documents and presentations
 - Projects/Resolutions
 - Does not contain all the content of the classes
- Basic rules:
 - Do not use cell phones during classes (both T and PL)
 - Do not use a computer in T classes
 - During classes, do not use software other than the one used in the Course Unit (e.g. chat)
 - Punctuality: 5 minutes tolerance (both T and PL classes)

Pedagogical Approach

- Iterative and Incremental
 - 4 Sprints → 4 Deliveries/Submissions in Moodle at the end of each sprint
 - 2 Feedback moments for sprints 1 and 3
 - Assessment
 - How: Mandatory and individual presentation/defense
 - When: At the end of sprints 2 and 4
 - Where: In lab classes and, if necessary, also out of classes
- Project Practical teamwork
 - Groups of 4 students (exceptionally 3) from the same lab class
 - Goals
 - Formative
 - Evaluative
 - To be developed
 - In lab classes
 - Outside of classes

Semester Overview

Iteration	Week	Starting	Ending	Project Goals	Lab/Autonomous Work						
	1	15/09/2025	19/09/2025		1. Setting up and getting used to required tools						
	2	22/09/2025	26/09/2025	n/a	2. Studying/Recalling SW Engineering concepts						
	3	29/09/2025	03/10/2025		principles and patterns presented						
Sprint 1	4	06/10/2025	10/10/2025								
	5	13/10/2025	17/10/2025	Focus on Requirements Elicitation/Specification and Analysis	 Studying the introduced topics Sprint 1 development 						
	6	20/10/2025	24/10/2025	Elicitation/opecinication and Analysis							
Sprint 2	7	27/10/2025	31/10/2025		 Studying the introduced topics Sprint 1 improvement (if needed) Sprint 2 development 						
	8	03/11/2025	07/11/2025	Focus on Analysis and Design activities							
	9	10/11/2025	14/11/2025								
Sprint 3	10	17/11/2025	21/11/2025	Focus on all SW activities	Studying the introduced topics Sprint 3 development						
	11	24/11/2025	28/11/2025	Applying more SW patterns/principles							
	12	01/12/2025	05/12/2025	Development of a software prototype							
Sprint 4	13	08/12/2025	12/12/2025	Focus on all SW activities	1. Studying the introduced topics						
	14	15/12/2025	19/12/2025	Development of a software prototype	2. Sprint 3 improvement (if needed)						
	X-mas	22/12/2025	26/12/2025		lolidavs						
		29/12/2025	02/01/2026	Holidays							
	15	05/01/2026	09/01/2026	Exposing an HTTP/REST API	3. Sprint 4 development						
	16	12/01/2026	16/01/2026	Final Project Assessment							

Assessment / Evaluation

- There is No Final Exam
 - This is valid for any period of exams (regular, appealing, special)
- 100% by frequency (project-based)
- Each sprint starts on the first Monday and ends at the last Sunday of the sprint development period

Iteration	Week											\A(c; \cht \(0/\)					
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Weight (%)
Sprint 1																	40
Sprint 2																	40
Sprint 3																	60
Sprint 4																	60

- development period improvement period
- feedback
- presentation/defense

About ESOFT Workload

- ESOFT worth 5 ECTS (European Credit Transfer System) credits
 - ECTS is used to measure student workload

- ESOFT workload = 5 ECTS credits x 28 hours = **140 hours** (throughout the semester)
 - Classes workload = 15 weeks x (1h + 2h) = 45 hours
 - Autonomous workload = 140 hours 45 hours = 95 hours

Recommended Tools

- Moodle ISEP
- C++ IDE (e.g. CLion, Visual Studio, Eclipse)
- Google C++ Testing Framework
- UML editor: PlantUML, Visual Paradigm
- Markdown editor/reader
- HTTP/REST client (e.g. Postman)
- GitHub

Recommended Bibliography

- Most important
 - Applying UML and Patterns, Craig Larman (3rd Edition), Prentice Hall, 2004
 - Clean Architecture, Robert C. Martin, Prentice Hall, 2017
 - Faculty-provided documents and links

- Supplementary
 - Hands-On Design Patterns with C++, Fedor G. Pikus, 2019
 - C++ Programming: From Problem Analysis to Program Design, D.S. Malik, 2018